UNCLASSIFIED

AD NUMBER AD907816 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; 29 DEC 1972. Other requests shall be referred to Air Force Flight Dynamics Laboratory, Attn: PTB, Wright-Patterson AFB, OH 45433. **AUTHORITY** AFWAL ltr, 11 Feb 1980

AFFDL-TR-72-147 - VOL. III

PROPULSION SYSTEM INSTALLATION CORRECTIONS

VOLUME III: SAMPLE CASES

W. H. BALL THE BOEING COMPANY

TECHNICAL REPORT AFFOL-TR-72-147 - VOL. III DECEMBER 1972

Distribution limited to U.S. Government againsts only, test and evaluation; statement applied 29 December 1972. Other requests for this document must be referred to Air Ferce Flight Dynamics Laboratory (PTB), Wright-Patterson Air Force Sees, Ohio 48433

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related hereto.

)

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

PROPULSION SYSTEM INSTALLATION CORRECTIONS VOLUME III: SAMPLE CASES

-

W.H. RALL

Distribution limited to U.S. Government agencies only, test and evaluation, statement applied 29 December 1972. Other requests for this document must be referred to Air Force Flight Dynamics Leboratory (PTB), Wright-Patterson Air Force Base, Ohio 45433

FOREWORD

This report was prepared by the Research and Engineering Division, Aerospace Group, of The Boeing Company under Air Force Contract F33615-72-C-1580, "Propulsion System Installation Corrections", Project 1366. The program was conducted under the direction of the Prototype Division, Air Force Flight Dynamics Laboratory, Air Force Systems Command. Mr. Gordon Tamplin was the Air Force Program Monitor.

The program was initiated on 31 December 1971 and draft copies of the final reports were submitted for approval on 31 October 1972.

Dr. P. A. Ross was Program Manager and Mr. W. H. Ball was principal investigator during the program. Significant contributions to the program were made by the following individuals: Mr. Joe Zeeben, engine performance; Dr. Franklin Marshall, inlet and exhaust system technology; Mr. John Petit, nozzle internal performance and nozzle/afterbody drag; and Mr. Gary Shurtleff, programming.

This report contains no classified information extracted from other classified reports.

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Ernert Charles

Lt. Col. Ernest J. Cross, Jr. Chief, Prototype Division
Air Force Flight Dynamics Laboratory

ABSTRACT

This report presents the results of a research program to develop a procedure for calculating propulsion system installation losses. These losses include inlet and nozzle internal losses and external drag losses for a wide variety of subsonic and supersonic aircraft configurations up to Mach 4.5. The calculation procedure, which was largely developed from existing engineering procedures and experimental data, is suitable for preliminary studies of advanced aircraft configurations. Engineering descriptions, equations, and flow charts are provided to help in adapting the calculation procedures to digital computer routines. Many of the calculation procedures have already been programmed on the CDC 6600 computer. Program listings and flow charts are provided for the calculation procedures that have been programmed. The work accomplished during the program is contained in four separate volumes. Volume I contains an engineering description of the calculation procedures. Volume II is a programmer's manual containing flow charts, listings, and subroutine descriptions. Volume III contains sample calculations and sample input data. Volume IV contains bookkeeping definitions and data correlations.

PRECEDING PAGE BLANK-NOT FILMED

TABLE OF CONTENTS

SECTION		1		Page
ī	INTRO	DUCTION	1	
II	LIGHTWEIGHT FIGHTER SAMPLE CASE		[´] 5	
	2.1	Configurat	tion	5
		2.1.1 Inl	let	5
		2.1.2 Noz	zzle/Afterbody	5
	2.2	Predicted	Performance Characteristics	5
		2.2.1 Inl	let	5
		2.2.2 Nóż	zzle/Afterbody	27
	2.3	Comparison of Predicted and Test Data		28
	2.4	Summary of Input Data for Lightweight Fighter		36
III	F-4J	SAMPLE CASE		37
	3.1	Configurat	tion	37
		3.1.1 Inl	let	37
		3.1.2 Noz	zzle/Afterbody	37
	3.2	Predicted	Performance Characteristics	44
		3.2.1 Inl	let	44
		3.2.2 Noz	zzle/Afterbody	44
	3.3	Comparison	n of Predicted and Test Data	44
*	3.4	Summary of	f Input Data for F-4J	56
	3.5	Sample Inp	put Data and Output Data	57
	REFE	ENCES		77

LIST OF ILLUSTRATIONS

Figure No.	Title	Page
ı	General Arrangement Drawing of Lightweight Fighter Study Configuration	Ź
2	General Arrangement, F-4J	3
3	Two-Dimensional Inlet Details	б
4	Subsonic Diffuser Internal Lines	7
5	LWF Subsonic Diffuser Area Variation	8
6	LWF Nozzle/Afterbody External Lines	9
7	Local Mach Number vs. Free-Stream Mach Number for LWF	14
8	LWF Recovery vs. Mass Flow	15
9	Matched Inlet Recovery	16
10	Matched Mass Flow	17
11	Buzz Limit	18
12	Distortion Limit	19 ,
. 13	Reference Mass Flow	21
14	K _{ADD} Factors for LWF Spillage Drag Prediction	22
15	Spillage Drag for LWF	23
16	Boundary Layer Bleed Airflow	24
17	Boundary Layer Bleed Airflow Total Pressure Recovery	25
18	Boundary Layer Bleed Drag	26
19	Nozzle Boattail Pressure Drag Coefficients as f (β)	29

LIST OF ILLUSTRATIONS (Continued)

1

Figure No.	Title	Page
20	Boattail Drag Correction for Nozzle Pressure Ratios Other Than $P_{\rm T}/P_{\infty}=2.5$	30
21	LWF Reference Drag for Nozzle/Afterbody	31
·22	Comparison of Predicted and Measured Inlet Recovery	32
, 23	Comparison of Predicted Data and Test Data for LWF Spillage Drag	33
24	Comparison of Predicted and Test Data for Nozzle/Afterbody Drag	34
25	Comparison of Predicted and Test Data for Subsonic Nozzle/Afterbody Drag as a Function of Nozzle Pressure Ratio	35
26	Basic F-4J Fuselage, Canopy, and Duct Configuration	38
27	F-4 Inlet Ramp Orientation	39
28	Inlet Geometry for $M_{\infty} = 0-1.20$	40
29	Inlet Geometry for $M_{\infty} = 1.60-2.0$	4 1.
30	Model F-4J/B Nozzle & Shroud Arrangement	42
. 31	Nozzle Geometry and Operating Conditions	43
32	Local Mach Number vs Free-Stream Mach Number	45
33	Total Pressure Recovery vs Mass Flow Ratio	46
34	Matched Inlet Recovery	47
3 5	Matched Inlet Mass Flow Ratio	48
36	Buzz Limit	49

LIST OF ILLUSTRATIONS (Continued)

Figure No.	Title	Page
37	Distortion Limit	50
38	Reference Mass Flow Ratio	51
39	Inlet Spillage Drag	52
40	Boundary Layer Bleed Drag	53
41	Boundary Layer Bleed Airflow	54
4.2	Reference Mozzle Drag for F-4.1	\$ 5

SYMBOLS AND NOMENCLATURE

À	Area, in ²
ÀC	Inlet capture area, in ²
A _O	Local stream tube area ahead of the inlet, in2
A _O I	Free-stream tube area of air entering the inlet, in ²
R	Aspect ratio, dimensionless
В	Velocity decay exponent, dimensionless
С	Sonic velocity, ft/sec.
c _D	Drag coefficient, $\frac{D}{qA_{REF}}$, dimensionless
C-D	Convergent-divergent
C _D	Additive drag coefficient, $C_{DADD} = \frac{D_{ADD}}{qA_{C}}$, dimensionless
C _D	Afterbody drag coefficient, DRAG dimensionless
C _D Base	Base drag coefficient $\frac{(P_b-P_{\infty})A_{BASE}}{qA_{MAX}}$, dimensionless
$c_{D_{\mathbf{S}}}$	Scrubbing drag coefficient, $\frac{DRAG}{qA_{MAX}}$, dimensionless
c _{f.}	Thrust coefficient, $\frac{F_g}{\cdot}$, dimensionless $\frac{w}{g}(V_{cp})$
c _s	Stream thrust coefficient, dimensionless, (defined by Figure 48 of Volume IV)
c_{V}	Nozzle velocity coefficient, dimensionless
Conv.	Convergent
D	Drag, lb.; Hydraulic Diameter, $\frac{4A}{P}$, in., diameter, in.

SYMBOLS AND NOMENCLATURE (Continued)

	•	C
F .	Thrust, 1b.	J
$^{\mathtt{F}}\mathtt{g}_{\mathtt{i}}$	Ideal gross thrust (fully expanded), lb.	
f/a	Fuel/air ratio, dimensionless	.)
g	Gravitational constant, ft/sec ²	
h	Enthalpy per unit mass, BTU/lb.; height, in.)
h _{fan}	Enthalpy of fan discharge flow, BTU/lb	
h _{pri}	Enthalpy of primary exhaust flow after heat addition ETU/lb	•.
h _t	Throat height, in ²	Ç
ĸ	Velocity decay coefficient, dimensionless	
L	Length, in.	*
M	Mach number, dimensionless	,
P	Pressure, lb/in ²	
Pr	Relative pressure; the ratio of the pressures parents and pressures parents and pressures parents are pressured to the pressure of the pressure parents are pressured to the pressure of the pressure parents are pressured to the pressure of the pressure parents are pressured to the pressure parents are parents are pressured to the pressure parents are pa	١
	and p_b corresponding to the temperatures T_a and T_b , respectively, along a given isentrope, dimensionless	
$\mathtt{P}_{\mathbf{T}}$	Total pressure, lb/in ²)
Q	Effective heating value of fuel, BTU/lb.	
ď	Dynamic pressure, lb/in ²	
R, r	Radius, in.)
s	Nozzle centerline spacing, in.	
T	Temperature, °R	
V	Velocity, ft/sec)

SYMBOLS AND NOMENCLATURE (Continued)

W Mass flow, lb/sec

W_{BX} Bleed air removed from engine, lb/sec.

 W_{C} , $\frac{W \sqrt{\theta}}{\lambda}$ Corrected airflow, lb/sec.

Weight flow rate of fuel, lb/sec.

Weight flow rate of air, primary plus

secondary, lb/sec.

W₈ Primary nozzle airflow rate, lb/sec.

x Length, in.

Angle of attack; convergence angle of nozzle, degrees

γ Ratio of specific heats, dimensionless

 ϵ Diffuser loss coefficient, $\frac{\Delta P_{iT}}{q}$, dimensionless

η_B Burner efficiency, dimensionless

y Kinematic viscosity, ft²/sec.

ρ Density, lb/ft³

SUBSCRIPTS

B Burner

b, base Base flow region

BP Bypass

BLC Boundary layer bleed

btail Boattail

c Core (nozzle); capture (inlet)

DES Design conditions

SYMBOLS AND NOMENCLATURE (Continued)

SUBCRIPTS	
е	Boattail trailing edge
EFF	Based on effective area
ENG	Refers to engine demand
f	Fuel
g	gross
GEOM	Básed on geometric area
int	Interference; internal
ip	Ideal, primary exhaust flow
jet	Exhaust flow jet
max	Maximum
miń	Minimum
s	Scrubbing flow region
SPILL	Spillage
T	Total condition; throat station
t _f	Total condition, fan flow
T/O	Takeoff
t_p	Total condition, primary flow
0	Local conditions ahead of inlet
2	Compressor face station
8	Nozzle throat station
9	Nozzle exit station
18	Fan discharge throat station
œ	Free-stream condition

Local

x

SECTION I

INTRODUCTION

This document presents the results from the application of PITAP procedure to two typical aircraft configurations. The two configurations used are the Lightweight Fighter (Figure 1) and the F-4J (Figure 2). The Lightweight Fighter (LWF) in the example is a study configuration used by the Boeing Company during proposal competition, for which extensive analysis and wind tunnel test data are available for comparison with predicted results. The F-4J is also a configuration that has been extensively tested during the Exhaust System Interaction Program (Contract F33615-70-C-1449). Data from these tests are used to compare with PITAP predicted results.

The main part of the PITAP calculation procedure, which is designated as Program TEM 333, has already been programmed and is operational on the Air Force computer. This program requires as input data:

- the engine performance charactéristics in the form of tabulated data,
- 2) flight conditions in the form of altitude, Mach number, and power setting,
- geometric constants describing the inlet and nozzle/afterbody,
- 4) tabulated data representing the performance characteristics of the inlet and the nozzle/afterbody reference drag

The first three of the above inputs are readily available for most cases. The fourth input, the inlet performance characteristics, must be generated using calculation procedures described in Volume I: Engineers Manual, use of test data or other analysis methods. The calculation procedures have not yet been programmed for automatic computation, so the discussion in this document is concerned primarily with the procedures used to predict the inlet performance characteristics used as input for the TEM 333 program. From this point on, all that remains to be done is prepare the input data, submit the program, and plot up the cutput results.

Figure 1: GENERAL ARRANGEMENT DRAWING OF LIGHTWEIGHT FIGHTER STUDY CONFIGURATION Jy.

)

)

)

)

)

)

2

Figure 2: GENERAL ARRANGEMENT, F-4J

Installed propulsion system performance data have been calculated for both the LWF and the F-4J sample cases. Only the input and output data from the computer run for the F-4J is presented in this document however, to avoid making the document classified.

4

SECTION II

LIGHTWEIGHT FIGHTER SAMPLE CASE

2.1 CONFIGURATION

The general arranement of the LWF configuration is shown in Figure 1. It is a single-engine aircraft with an underfuselage mounted inlet. The inlet is a two-dimensional, fixed geometry design with throat slot bleed. No bypass system is used. An advanced turbofan engine is used which has a variable geometry convergent-divergent exhaust nozzle.

2.1.1 Inlet

7 -

The geometric details of the inlet are shown in Figure 3. The critical areas required for analysis of the inlet performance characteristics are shown in Figure 3. These areas would normally be obtained from preliminary design drawings of the configuration or, if not available, reasonable engineering assumptions can be made.

The internal lines of the subsonic diffuser are shown in Figure 4, and the diffuser area variation is shown in Figure 5.

2.1.2 Nozzle/Afterbody

The nozzle/afterbody external geometry is shown in Figure 6. This drawing provides the dimensional data required to predict nozzle/afterbody drag. The full open nozzle position is used in calculating nozzle/afterbody reference drag.

2.2 PREDICTED PERFORMANCE CHARACTERISTICS

2.2.1 Inlet

The inlet performance characteristics which must be predicted to use as input to TEM 333 (existing program) include total pressure recovery, boundary layer bleed air drag, and spillage drag. No bypass system is used, therefore bypass drag is not predicted.

The LWF is designed to fly at speeds up to Mach 1.60, but the leading edge of the fixed 7 degree ramp has been positioned to keep oblique shocks out of the inlet up to Mach 2.0. The

Figure 3: TWO-DIMENSIONAL INLET DETAILS

5

)

)

)

)

)

)

3

Figure 4: SUBSONIC DIFFUSER INTERNAL LINES

Figure 5: LWF SUBSONIC DIFFUSER AREA VARIATION

)

Figure 6: LWF NOZZLE/AFTERBODY EXTERNAL LINES

following flight conditions were selected for use in the analysis procedure:

 $M_{\infty} = 0, 0.2, 0.6, 0.8, 1.2, and 1.60.$

The low-speed pressure recovery for the $M_0=0$ and 0.20 points is estimated using the procedure in Section IV, Vol. I, beginning on page 25. The calculation proceeds as follows:

The following input quantities are obtained from known geometric data, engine data, and data correlations (Vol. IV),

$$\frac{r}{D} = \frac{23}{4 \cdot (700)} = .01$$

$$A_{C} = 851 \text{ in}^{2}$$

$$A_{T} = 700 \text{ in}^{2}$$

$$A_{T} = 200 \text{ in}^{2}$$

$$A_{T} = 0.12$$
Geometric data from Figure 3

Geometric data from Figure 3

Geometric data from Figure 3

Assumed

Subsonic diffuser loss coefficient for subsonic flow. Average value from Figures 24 & 25, Vol. IV.

3

3

$$\frac{W_{\bar{2}}\sqrt{\theta_2}}{\delta_2} = \text{Engine Airflow for } M_0=0, 0.20$$

The above geometric and aerodynamic quantities are used as input to the low-speed calculation procedure documented in Vol. I, pages 33-41. This procedure has now been programmed as a separate subroutine, which is contained in Volume II, Programmers Manual. The results of the machine calculation are as follows:

$$M_{O} = \frac{P_{T_{2}}}{P_{T_{O}}} = \frac{W\sqrt{\theta}}{\delta}$$

0 0.8137 MAX

0.20 0.8937 MAX

Low-speed total pressure recovery can also be estimated from the correlation curve of Figure 20, page 33, Volume IV. The recovery values obtained using this correlation are nearly identical to the above values.

The transonic pressure recovery (M_∞= 0.6, 0.8, 1.2) is calculated from the subsonic diffuser loss coefficient and calculated throat entrance Mach number as a function of inlet airflow. Since throat Mach number is a function of engine airflow and engine airflow is a function of diffuser recovery, which depends on determine the transonic pressure recovery. This procedure is illustrated in the flow chart of Figure 16, of Volume I. Using this procedure, the following total pressure recoveries were calculated for the transonic cases:

M _∞	$\frac{P_{\mathbf{T}_{2}}}{P_{\mathbf{T}_{\infty}}}$
0.6	0.965
0.8	0.965
1.20	0.962

The supersonic inlet total pressure recovery through the shock system at the engine-matched condition is normally obtained from the charts of Figure 17, Volume I. To these shock losses are added the total pressure recovery losses due to the subsonic diffuser. The resulting total pressure is the normal recovery at the match point as a function of free-stream Mach number. For the LWF inlet, a two-shock supersonic diffuser design, the match point shock recoveries are obtained from Figure 17, Volume I for N=2. Next, the subsonic diffuser total pressure losses, calculated using a duct loss coefficient, $\varepsilon = .12$ (from Figure 24 of Volume IV) and an assumed throat Mach number of .75, are added to the shock losses to obtain the design point total pressure recovery as a function of Mach number. The calculated

quantities are summarized in the following table:

	(Fig. 17, Vol. I)	(Fig 7)	(Fig. 1 Vol. I)	5,
M_{∞}	$\frac{P_{\overset{\circ}{T_{NS}}}}{P_{\overset{\circ}{T_{O}}}}$	P.T.O.	$\frac{P_{_{\mathbf{T}_{2}}}}{P_{_{\mathbf{T}_{1}}}}$	$\frac{P_{\Upsilon_2}}{P_{\Upsilon_{\omega}}}$
1.0	1.Ò	1.0	0.9625	0.9625
1.2	0.99	1.0	0.9625	0.952
1.4	0.982	1.0	0.9625	0.945
1.6	0.968	1.0	0.9625	0.93

The above recovery values can be used for most preliminary design studies where performance is required at design point conditions over a range of flight Mach numbers. To fit the format of the TEM 333 program however, it is necessary to specify recovery as a function of engine-plus-bypass mass flow ratio, $A_{\text{O}}/A_{\text{C}}$. This can be accomplished by using the design point recovery values calculated above as constants which do not change with mass-flow ratio below the design point and which drop straight down form the design match point. This results in a series of recovery vs. mass flow ratio plots which are different from the actual variations as shown by the following sketch:

The above method does not result in large errors for engine match lines are near the match point. However, it can result in predictions of recovery that are slightly low for off-design

airflow demands. To demonstrate the use of an alternate recovery predicting method that can be used to improve on the recovery variations at off-design mass flow ratios, an existing computer program (Reference 1), available to industry, was used for the LWF sample case, as an aid in calculating off-design recoveries. This computer program, which was originally designed to calculate theoretical additive drag, also calculates the inviscid total pressure recovery through two-shock inlet systems. The program also calculates the mass flow spilled over sideplates of various amounts of cutback. The existing version of the program, however, does not take into account the effect of the spilled mass flow on the strength of the normal shock. It is necessary, therefore, to make an adjustment to the machine computed values of inlet lip total pressure recovery to account for this effect. This approach was used for the LWF sample case. It was assumed that the airflow spilled over the sideplates resulted in a directly proportional increase in A/A* of the supersonic flow ahead of the normal shock. The new Mach number corresponding to this A/A* was used to obtain the normal shock total pressure recovery. The inlet lip Mach numbers from the program (as a function of mass flow ratio, $A_{O_{\tau}}/A_{C}$) were then used with a subsonic diffuser loss

coefficient of 0.12 to obtain overall total pressure recovery, $P_{\rm T}/P_{\rm T}$, as a function of inlet mass flow ratio. Using the

above described methods the plotted data shown in Figure 8 were obtained for Mach numbers 1.20 and 1.60. The subsonic values for $M_O = 0.60$ and 0.80 obtained from the previously described calculation program are also shown in the same plot for the sake of completeness. Various engine airflow demand match lines are also shown in Figure 8 to indicate where the inlet/engine combination will actually operate. The matched recovery and mass flow as a function of local inlet Mach number are shown in Figures 9 and 10 respectively. Approximate inlet buzz and stall limits are input into the TEM 333 program to give indications of those operating points where inlet/engine compatibility problems may be likely to occur. These are not required to obtain performance data, and the calculations will not be stopped if one of the limits is exceeded, however, they do serve to point out possible problem areas. The buzz and stall limits shown in Figures 11 and 12 respectively, were obtained from trends in experimental data. If reliable buzz and stall limits cannot be obtained, the best available estimate should be made, by selecting appropriate points from the recovery vs. mass flow ratio plots of Figure 8.

Figure 7: LOCAL MACH NUMBER VS FREE-STREAM MACH NUMBER FOR LWF

Figure 8: LWF RECOVERY VS MASS FLOW

Ĵ

)

Figure 9: MATCHED INLET RECOVERY

Figure 10: MATCHED MASS FLOW

)

)

Figure 11: BUZZ LIMIT

Þ

3

3

1

(

Figure 12: DISTORTION LIMIT

The first step in calculating the inlet drag is to establish an appropriate baseline mass flow ratio for use in bookkeeping aero and propulsion forces on the airplane. For subsonic Mach numbers, the baseline mass flow ratio is chosen as

$$(\frac{A_O}{A_C})_{Ref} = \frac{A_T}{A_C}$$
. For supersonic Mach numbers, the baseline mass flow ratio is chosen as $(\frac{A_O}{A_C})_{Ref} = (\frac{A_O}{A_C})_{MAX}$ for each Mach number.

The maximum supersonic operating mass flow ratios for the LWF were obtained by use of the previously described computer program of Reference 1. The resulting baseline mass flow as a function of free-stream Mach number is shown in Figure 13.

The spillage drag calculation for the LWF was initiated by using the additive drag program of Reference 1 to calculate theoretical additive drag as a function of free-stream Mach number and inlet mass flow ratio. After the calculated additive drag was obtained, two adjustments were made:

- 1) The additive drags were adjusted so that the additive drag was zero at the baseline mass flow ratio condition. This resulted in plots of ΔC_D vs. A_O / A_C .
- Next, the $\Delta C_{\rm D}$ values were multiplied by ${\rm K}_{\rm ADD}$ factors to correct the theoretical additive drags for configuration effects. These ${\rm K}_{\rm ADD}$ factors (Figure 14) were obtained from the data of Volume IV. Due to the limited amount of data on ${\rm K}_{\rm ADD}$ factors it was necessary to do a considerable amount of interpolation, extrapolation, and smoothing to obtain the ${\rm K}_{\rm ADD}$ factors shown in Figure 14.

The final spillage drag data are presented in Figure 15.

The boundary layer bleed drag was calculated using the bleed airflow shown in Figure 16 and the bleed airflow total pressure recovery shown in Figure 17. These data were obtained from Volume IV, Section IV, "Data for Specific Configurations."

The final calculated boundary layer bleed drag is presented in Figure 18. The final bleed drag is presented as a single curve of $C_{D_{\mbox{\footnotesize BLC}}}$ vs. $A_{\mbox{\footnotesize OBLC}}$ because there was little variation

Figure 13: REFERENCE MASS FLOW

13.1

3

Figure 14: K_{ADD} FACTORS FOR LWF SPILLAGE DRAG PREDICTION

Figure 15: SPILLAGE DRAG FOR LWF

Figure 16: BOUNDARY LAYER BLEED AIRFLOW

Figure 17: BOUNDARY LAYER BLEED AIRFLOW TOTAL PRESSURE RECOVERY

O

Figure 18: BOUNDARY LAYER BLEED DRAG

in the drag as a function of Mach number. Also, since the exact geometry and location of the boundary layer bleed exit was not know, the momentum drag of the boundary layer bleed air was increased by a factor of 1.25 to account for flap drag of the exit doors. This drag would normally be computed by the procedure detailed in Section IV of Volume I, if exit geometry were specified.

The drag increases to a maximum as bleed airflow is increased, then starts to decrease again. This is due to the fact that variations in bleed airflow are produced by variations in shock position. As shock position goes more supercritical, plenum pressure drops along with airflow. Conversely, as the shock goes more subcritical, the airflow goes up and so does the pressure recovery of the bleed air. These effects tend to flatten out the C_D vs. A_D curves, as shown in Figure 18.

2.2.2 Nozzle/Afterbody

The calculation procedures for computing nozzle/afterbody drag are computerized in the TEM 333 program; therefore, the sample calculations consisted of preparing the input data for the nozzle/afterbody portion of the calculation procedure and submitting the job to the computer. These input data consist of geometric constants specifying nozzle maximum diameter, D_{MAX}, nozzle boattail length, L, nozzle-to-nozzle spacing, S, and nozzle/afterbody reference drag as a function of Mach number for the reference geometry and the reference nozzle pressure ratio. The following table summarizes the LWF geometrical constants used by the nozzle/afterbody calculation procedure in the program:

GEOMETRICAL CONSTANT	VALUE
Nozzle Spacing, S	(Single O Engine)
Nozzle Maximum Diameter, D _{MAX}	51 in.
Boattail Length, L	50 in.

The above constants are used, together with the nozzle pressure ratio (obtained internally by the computer program from the tabulated engine performance input data), to obtain

boattail drag from the curves of Figures 19 and 20.

It is also necessary to specify as part of the input data for nozzle/afterbody drag calculation, the variation of nozzle/afterbody reference drag as a function of free-stream Mach number. This reference drag is obtained from Figures 19 and 20 using the reference nozzle/afterbody geometry shown in Figure 6. The reference nozzle/afterbody boattail angle is 4 degrees (full open nozzle position). For this boattail angle, the subsonic reference drag is obtained from Figure 19 as a function of free-stream Mach number. The supersonic boattail reference drag is calculated from the equation shown in Figure 19. Since the reference boattail angle is only 4 degrees, no pressure ratio correction form Figure 20 is required. The final predicted reference drag for the nozzle/afterbody is shown in Figure 21.

<u></u>

2.3 COMPARISON OF PREDICTED AND TEST DATA

The calculated data have been compared with test results obtained from a series of aero and propulsion tests to determine their accuracy in predicting the actual inlet recovery and spillage drag and nozzle/afterbody drag.

The results of the inlet total pressure recovery comparison are shown in Figure 22. Good agreement is obtained between predicted recovery and measured recovery throughout the flight Mach number range.

A comparison of predicted and measured inlet spillage dracs is presented in Figure 23. Agreement between predicted and measured drag is generally fair for most Mach numbers, and is probably adequate for preliminary studies, however, the limited amount of data available, and the scatter in the data, from which to select the Kadd factor, made it necessary to spend considerable time in arriving at a suitable set of Kadd factors to use. This situation could be considerably improved by the systematic gathering and analyzing of an extensive body of drag data over a wide range of configurations.

The results of nozzle/afterbody drag predictions for a 20 degree boattail angle nozzle are compared with measured data over a Mach number range from 0.40 to 1.60 in Figure 24. The predicted drags are somewhat low subsonically and slightly high supersonically. Figure 25 presents results comparing measured and predicted subsonic nozzle drags as a function of nozzle pressure ratio for a 20 degree boattail angle nozzle.

Figure 19: NOZZLE BOATTAIL PRESSURE DRAG COEFFICIENTS AS f (B)

Data Sources: 1. NASA TM X-1960

Ì

_}

>

Nozzle Pressure Ratio, P_{T8}/P_o

5.0

6.0

7.0

8.0

Figure 20: BOATTAIL DRAG CORRECTION FOR NOZZLE PRESSURE RATIOS OTHER THAN $P_T/P_{\infty} = 2.5$

4.0

3.0

2.0

1.0

ľ;

Figure 21: LWF REFERENCE DRAG FOR NOZZLE/AFTERBODY

9

Figure 22: COMPARISON OF PREDICTED AND MEASURED INLET RECOVERY

Mách Number, Mo

Figure 23: COMPARISON OF PREDICTED DATA AND TEST DATA FOR LWF SPILLAGE DRAG

Figure 24: COMPARISON OF PREDICTED AND TEST DATA FOR NOZZLE/AFTERBODY DRAG

Figure 25: COMPARISON OF PREDICTED AND TEST DATA FOR SUBSONIC NOZZLE/AFTERBODY DRAG AS A FUNCTION OF NOZZLE PRESSURE RATIO

2.4 SUMMARY OF INPUT DATA FOR LIGHTWEIGHT FIGHTER SAMPLE CASE

The input data used for the TEM 333 calculation of the LWF sample case are summarized in the following table:

INLET GEOMETRY	FIGURE 3
SUBSONIC DIFFUSER GEOMETRY	FIGURE 4
NOZZLE/AFTERBODY GEOMETRY	FIGURE 6
${ m M}_{ m O}$ vs. ${ m M}_{ m \infty}$	FIGURE 7
P _{T2} /P _{TO} vs. A _O /A _C	FIGURE 8
P _{T2} /P _{TO} vs. M _O	FIGURE 9
A _O /A _Ĉ vs. M _O	FIGURE 10
(A _O /A _C) vs. M _O LIMIT	FIGURE 11
(A _O /A _C) vs. M _O DIST. LIMIT	FIGURE 12
ACDSPILL VS. AOI/AC	FIGURE 15
$^{A}_{O_{\mathrm{BLC}}}/^{A_{\mathrm{C}}}$ vs. $^{A}_{O_{\mathrm{I}}}/^{A_{\mathrm{C}}}$	FIGURE 16
CDBLC vs. AOBLC/AC	FIGURE 18
C _D vs. M _O REF. NOZZLE	FIGURE 21
ENGINE PERFORMANCE TABULATED DATA	CLASSIFIED (NOT INCLUDED IN THIS REPORT)

SECTION III

F-4J SAMPLE CASE

3.1 CONFIGURATION

3.1.1 Inlet

The general configuration of the F-4J is shown in Figure 2. The inlets are side-mounted, variable geometry, vertical ramp, two-dimensional, with boundary layer bleed through a porous second ramp and a small throat slot. Figure 26 shows the available details of the inlet and subsonic diffuser. These lines were taken from a drawing of a wind tunnel model used during tests reported in Reference 2. The sideplates are cut back completely ahead of the cowl lip. The initial ramp angle is fixed at 10 degrees and the second ramp angle varies from 0 degree relative to the first ramp angle relationships are shown in Figure 27.

The inlet geometry used for the analysis of the F-4J inlet performance characteristics is shown in Figures 28 and 29.

3.1.2 Nozzle/Afterbody

The nomenclature used for the nozzle afterbody drag prediction is shown in Figure 30. Typical nozzle geometries and operating pressure ratios are shown in Figure 31.

The nozzle/afterbody geometric parameters (full scale) used in the prediction method are summarized in the following table:

PARAMETER		VALUE	
Max Nozzle Diameter,	D _{MAX}	38.6	in.
Boattail Length,	L	23.4	in.
Nozzle Spacing,	S	53.8	in.

Figure 26: BASIC F-4J FUSELAGE, CANOPY, AND DUCT CONFIGURATION

.

8

C

C

Figure 27: F-4 INLET RAMP ORIENTATION

Figure 28: INLET GEOMETRY FOR $M_{\infty} = 0 - 1.20$

)

Figure 29: INLET GEOMETRY FOR $M_{\infty} = 1.60 - 2.0$

Figure 30: MODEL F-4J/B NOZZLE & SHROUD ARRANGEMENT

Figure 31: NOZZLE GEOMETRY AND OPERATING CONDITIONS

3.2 PREDICTED PERFORMANCE CHARACTERISTICS

3.2.1 Inlet

The same procedure was used to calculate the F-4J inlet performance that was used to calculate the inlet performance of the LWF previously discussed. The basic geometries of the two configurations are quite similar, except for the fact that the F-4J inlet is oriented with the ramp vertical instead of horizontal.

The same $K_{\rm ADD}$ factors were used for both the F-4J and the LWF. These factors are shown in Figure 14. The F-4J inlet geometry was used in the additive drag program (Reference 1) to obtain additive drags. These were then adjusted to the correct baseline mass flow ratio, and multiplied by the $K_{\rm ADD}$ factors to obtain the final spillage drags shown in Figure 39.

The predicted inlet performance characteristics for the F-4J are presented in Figures 32 through 41, in a format that is compatible with the TEM 333 program input.

3.2.2 Nozzle/Afterbody

Just as in the case of the LWF nozzle/afterbody drag calculation, the only input data required (in addition to geometric constants and engine performance tabulated data) is the nozzle/afterbody reference drag. This was determined from the data in Figure 40, 41 and 45, Volume I. The resulting reference drag is presented in Figure 42.

)

)

)

3.3 COMPARISON OF PREDICTED AND TEST DATA

Most of the F-4 experimental data which are available for comparing with predicted data are classified. To include these data in this report, it would be necessary to classify the report, which would limit its distribution.

Since the primary purpose of this report is to provide guidance in the use of the calculation procedure, it was decided not to include classified data, so the report could have the widest possible distribution.

Figure 32: LOCAL MACH NUMBER VS FREE-STREAM MACH NUMBER

Э

Figure 33: TOTAL PRESSURE RECOVERY VS MASS FLOW RATIO

Figure 34: MATCHED INLET RECOVERY

Figure 35: MATCHED INLET MASS FLOW RATIO

Figure 36: BUZZ LIMIT

)

Figure 37: DISTORTION LIMIT

Figure 38: REFERENCE MASS FLOW RATIO

Figure 39: INLET SPILLAGE DRAG

Figure 40: BOUNDARY LAYER BLEED DRAG

Figure 41: BOUNDARY LAYER BLEED AIRFLOW

$$A_{Ref} = .785 (D_{Max})^2 = 1,170 In.^2$$

 $D_{Max} = 38.6 In.$

蠡

2

į

Figure 42: REFERENCE NOZZLE DRAG FOR F-4J

3.4 SUMMARY OF INPUT DATA FOR F-4J

The F-4J data used for input to the TEM 333 program to calculate installed propulsion system performance are summarized in the following table:

J

INLET GEOMETRY	FIGURE 26, 2 28, 2	7
SUBSONIC DIFFUSER GEOMETRY	FIGURE 26	
NOZZLE/AFTERBODY GEOMETRY	FIGURE 30, 3	1
M _O vs. M _∞	FIGURE 32	
P _{T2} /P _{TO} vs. A _O /A _C	FIGURE 33	
P _{T2} /P _{TO} vs. M _O	FIGURE 34	
A _O /A _C vs. M _O	FIGURE 35	
(A _O /A _C) vs. M _O LIMIT	FIGURE 36	
(A _O /A _C) vs. M _O DIST. LIMIT	FIGURE 37	
(A _{OI} /A _C) vs. M _O REF.	FIGURE 38	
ACD vs. AOI/AC	FIGURE 39	
C _{DELC} vs. A _{OBLC} /A _C	FIGURE 40	
Ao _{BLC} /Ac vs. Ao _I /Ac	FIGURE 41	
C _D vs. M _O REF. NOZZLE	FIGURE 42	
TABULATED ENGINE PERFORMANCE DATA	J79-GE-8	

3.5 SAMPLE INPUT AND OUTPUT DATA FOR F-4J

This section contains sample input and output data taken directly from the computer program printout for the F-4J installed performance calculation. It is included to illustrate the format of the input and output data and to present typical results of a calculation.

OUTPUT

Standard printed output includes:

- 1. A "card image" listing of all input cards.
- 2. Labeled listing of all input fields as stored in the computer. The expanded table 2A is output as is the internally generated table of Mach₉ as a function of A_8/A_9 for γ_1 .
- 3. Output matrices including the input and output data for each of one to ten cases. A new matrix is printed whenever Mach number changes, altitude changes, or ten points have been computed at the current Mach and altitude. For each case the following are printed.

CASE	Sequential case number	
TLIA	Pressure altitude - input	ft.
ЪЗ	Power setting - input	
FNA	Installed net thrust	lb.
WFT RF	Installed fuel flow corrected for recovery	
SFCA	(WFT RF)/(FNA) .	
FNRF	Input thrust corrected for recovery	lb.
FRAM	Ram drag	lb.
RF	Recovery factor	
MILRF	Mil-Spec recovery factor	
DINLET	Inlet drag	lb.
CDSPL	Coefficient of spillage drag	

CDBLD	Coefficient of bleed drag	
CDBYP	Coefficient of bypass drag	
CDINL	Coefficient of inlet drag	
DNOZ	Afterbody drag	lb.
CDBT	Coefficient of boattail drag	
CDBASE	Coefficient of base drag	
DCINT	Coefficient of nozzle interference drag	
DNOZ REF	Reference afterbody drag	1b.
P8/P0	Nozzle pressure ratio - input	
A9	Nozzle exit area - input	sq. in.
A8	Nozzle throat area - input	sq. in.
CFG	Nozzle gross thrust coefficient	
BETA	Boattail angle	degrees
FN INPUT	Net thrust - input	lb.
WF INPUT	Fuel flow - input	lb/hr.
SFC INPUT	(WF INPUT)/(FN INPUT)	
W INPUT	Corrected airflow - input	lb/sec.
W ABS	Absolute airflow	lb/sec.
FN/DELTA	FNA/6amb	lb.
WF COR	WFT RF/(θamb δamb)	lb/hr.
SFC COR	(WF COR)/(FN/DELTA	
TAMB	Ambient temperature	OR
PAMB	Ambient pressure	
тто	Total temperature of free-stream	\circ_{R}
Q	Dynamic pressure	lb/sq. ft.

AOE/AC Engine mass flow ratio

AOI/AC Inlet capture mass flow ratio

AO/AC Inlet mass flow ratio

STATUS If equal to -99.999 a diagnostic message was written for this point.

- 4. Diagnostic messages. The diagnostic messages are all self-explanatory.
- 5. MARK II Output.

ř,

If the code on card 5.1, field 1, is 1.0 or 2.0 a MARK II engine performance deck is written on TAPE 7. The format is 80 character BCD, "card image." The MARK II deck can then be copied to PUNCH or linked to a following program.

The MARK II format is as follows:

- 1. Title (card image of input card 1.0)
- 2. Mach-alt (card image of input card 5.2)

DEC 66. 1972		,		_										,																
4 5 6 7 8 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		NOZ REF 	TAB 1	TAB 2	φ.	.7			6.	1.2	, f.	0 • 7	5.€ €	TA8 28	TAB 2C		TAB 20	TAB 2E	188 2		9.	~ *0	6.	1 · Z	2.0	TAB 4		1.2.	1.6	748 5
7		2•û •909																									-		***************************************	
6789612		1.8 .011																												
5		1.5				,								2.0	- 905 2. r	.665										,				
2245672	8	1.2 .035		2 • 8		.72	5 56 •					•		1.6	945	-62		2.0	• <u>7</u>	.70	° °			. 6	9				*****	
4 4 7 8 9 6 1	\ !	1.3 .366	ĸ	1.6		.70	.365	956	350.	• 47 & • 55 65	.95a	. 0 0 0 0 0 0 0	274	1.5	.97 1.2	, 10 10	í	1.6	.635	668	ٿ د			.	.048				*	
2 2004032	ION. H	. 95 . 55		1.2	. 8 . 972	67	.973	96	53	ያ ያ	lo L	62	72	0 0	6	La l	0		9	• 9	•		0.	• "	915				***************************************	
12 372 61	FIGURA	. 85 . 642		6•	933	65		. 975	29	£ 53	16	. 925	2.5	166.	. 93 		1.3		.627	. 65	.,	• • •	١.	S C) ~	2.0	いしゃ	. 582	0675	1.
2	7 1	.75 .041		.3	- 56 - 367	•		.983				.935	S (ተ ን ታ	477	2	1.6 .45	φ.	655	. vo	2	. 315 . 315	92	C) +	4 C .	3.6	ت إن	1000	34.5	J.
1	976	. 4 . 944 2 . 61	:	.7	٠٠. وو	. 5		. 937	5	. 26.		.952	(S)	20	96	.575	1.5	.7		٠.	. 652	92.	င္သ	. 144	77.	1.2	525	. 3275	322	7
030,667		5. • 344 6. 82	3].	۲. وڻ	•3 •99≅	• •	• 3 95	395	×.	.3 .3	-395	.974) , , ,	• 38 0	•		ŋ•	1.		# 1	.123	15	CI U	งโด	. T	0 0	• • • •	53	ر. د. د.

)

)

ı
i
- 1
- 1
- 1
- 1
W
ŭ
9
7
Ħ
1
9
<u> </u>
3
. [
តា
2
н
4
H
ব
C
-
- 1
- 1

*

CARO 12345	23456789112344578	2 90123456789	0123456789	012345578901	9012345E789C12345678901234567890	5678901234567	390	DEC. 06, 1972	الإنجاب والمراجع	
101		4333.	4131. 231							
102 103	5500. 1. 1=000. 1.	16933	36240, 198, 28330, 144,				٠			
104	5000- 1	860.	9693. 93		***************************************					
195 106	5988. 1 5003. 1	330. 566.	5114. 64 555. 43							
	796C. 1	55.0.	202. 24						,	
138 1.0	•	1288	7685, 272							
110	303. 1	36 3 û •	4716. 23				, , , , , , , , , , , , , , , , , , , ,			
111	5000° 1	4960	2879. 169							
11 11 21 11 22 22 23			5783. 73.							
114	5303. 1	403.	£138. 48							
115	55000 1.	1463.	8791. 17.						,	
117 1.2										
113			47215. 276.	•						
126	1 -3003	3200	7655. 142			*				
121	500C.	583.	2403. 59.							•
122	5000. 1	263.	772. 35			, , , , , , , , , , , , , , , , , , , ,				
123	. មា ក្រុ	900	27 • 664	•						
Ì	5000. 1	3363	4393. 235							
126	# 	583 443	3212, 17 3232, 11					•		
123	5320.	993.	4852. 73.							
129	55530. 1.	4153.	5619. 27.							
131 1.6	•	;								
132	169.		8. 2							
134	57575 Te	9 0	7650. 83.							
135	F020. 1	25.0	1276. 54		•				•	
136	5989° 1	بر ارد ارد	129. 55							
	5355	933	1367, 223							
139	55000 1.	9395°	20682, 106.							
141	£ 550. 1	366	3139. 65.			٠				
142	5030. 1	517	522. 43				,			•
	1 .003 x	67.33.	993. 13						-	
145	45669.1.		22541. 118. 14284. 72.							
147	5 3 6 3 . 1	370.	24. 44	STATES OF THE PERSON ASSESSMENT OF THE PERSON						
•							* · · · · · · · · · · · · · · · · · · ·	***	And the state of t	; ;
•		,						,		

TEH-333 ENGINE PERFORMANCE PROGRAM

		٠	REF -•
*	0-00000-0-	0-00000*0-	2.00000-0NOZ REF .00900-0 J79-6
	-0.00000 -0.00000	-0•00000	1.80000
	000000-0-	-0-00000	1.50000 .01520
	00000-0-	00000-0-	. 1.25000
	-6.00063	-0.00000	1.00600 .06600
N WS/WB=.ES	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	00000-0-	• 95000 • 86693
J79-8 F4 CONFIGURATION	-0.30600	00500*0-	35000
J79-6 F4	-3.0000		.75600 .04100
	-0-0c030 -0-0c030	-0.00090 E DRAG TABLE	0 C 7 79 °
	W8 TABLE -0.03090 -6.03955	-0.03000 -0.0330 REFERENCE NOZZLE DRAG TAULE	9 7 7 7 6 * 9 0 6 6 0 * 9

	22.0	10.7 67	nna•a-	•	.	•				•	
TABLE NUMPEP 1 3 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 000000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 00000 6. 0000	3.50003 3.60093	-0.00000-0-	-6.30069	00 • 0 -	000	0.00000-0-	000000-0-	00.0-	0000	-0.00000	-0.00000-01AB 1
TABLE NUMBER 24 . 5263C	6007	000	9696	00	(D) (1.60003	0000	0.0	000	0.00	0.00000-
35355.	99.53	9953	3366	96	325	1696	-1-3	0.0-	00	0.00	0.00000-0
១១១ ១១៣ ១៣ • •	650000	. 98600	.55000	79.	000	.96569	7200	င္မာ ယ	0000	-0.00000-0-	
.39636	5353	3000	5256	65	000	6753	90000	0.0-	000	0.000	-000030
3350	5005	6000	9758 5256	96	300	.65503	3350		50	000	0.0000.0
33566*	9379	9786	9769	96	300	3956	0000	0.0	90	0.00.0	0.000000
33566.	からいなめ	9780	97.00	96	s c c		3000	. O -	30	0.00	0.00000-0
33656	£003	2009	6250	30	3	57 GC	2000	0	00	3.000	0.000.0
. 9742C	95 23 50 03	355	320 300	72	5 C	. 74663	-	 	3 C)		-00000.0
a ×	92030 9 TO +1	919C	. 39160	ro I	SCO CURVES	8816 ERPC	-6.5 AS	. A	30 0	0 • 0 0 • 0	-00000-0
0					1			1	١ ١		-
3966	327 584	355	3825		6268	9 6	36	.5205 .64.83	מות	v i a	
	6738	. 6853	6942	7333	.7125	. 7217	.7368	.8317	.7492	.7583	,
0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	994	993	6266	26	9316	6	0 6	9890	וס ס	ლი	
	184	399	9833	79	9790	6	2	9768	וסי	ויסי	•
	÷26	973	9731 •	72	.9715	~	60	• 96.43	(Tr	or o	
ľ	5	27.0	1015	6	10		1660	. 1.04.3	5192	2	
2	. 5516 . 5516 . 531+	. 5587 . 5395	6.49	5748 5557	.5829 .6638	.5916 .5718	.5991 .6799	.6833	6361	.6233	
0360	712	720	7294	36 22	44	r∙ o	.7603	. 7638	.7769	~ 6	•
,	937	936	9859	55.0	34	. 93	. 9836	.9833	4286.	. 6	
	931	986 973	9851 . 9723 .	70	200	96	.9773 .9672	.9765 .9631	.9579	9.6	
0002.	321	342	630	100	36	1 ~ u	3 11	1 J U	489	∫ −4 α	
	58/	594	610	28	1	52	20	ıω	643	5	
,	657	664	713	80 6	800	1000	1000	.7663	713	· CV a	
9459	200	200	45.4	710	7 4	טוע גוע	טונ בוע	סוַית	ים הוע הוע	2 9	
	. 4855 . 9413 . 9736	. 4376 . 9256 . 9722	9799 9719	3792 9792 9894	.97.5 .9630	. 9548 . 9778 . 9666	.9771 .9771 .9652	.9764 .9764 .9623	.9757 .9585	. 9550 . 9550	
.75										•	
* 34 ,	‡ ‡										
))		•))	`))		Ć	ن

									,		والمراجعة				,					•											-0-00000-0-		- 00000-01	0-00000.0-	-0.00000-01A8 20	
. 9580	4.825	.5435	6650	7076.	.9637	.9548	• 9265		4.850	.6083	, 670G 4	. 9536	. 9441	3568.	.5025	.5706	.05/2	. 9358	. 9274	.9145	• 6386	5200	2025	.6667	.7400	.9186	. 9107	.8810		6	00000-0-		60000	0.0000.0-	000000-0-	
.9592	. 4642	.5373	**************************	.9721	• 9645	. 9563	.9297		. 4665	6322	.6638	.9557	9451	.9602	.4822	.5533	8 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.9379	.9283	.9164	• 3916	0 4 0 4	E 2 C n	0 th	.7327	.9201	.9114	. 9830			90000		2000	. 66588	000000-0-	
.9608	.4460	.5312	* 2254 * 65254	Ţ	.9653	.9574	.9331		. 4480	. 55 C.	.6577	*9577	9462	9536.	.4623	• 55.65	0 4 29•	9398	.9291	.9179	• 8952	7.26.3	200	. 5. 10 t	.7253	.9218	.9121	6498.		•	2	•	ľ	v		
. 9632	.4277						.9370		•4295	2925°	6515	.9593	2246.	.9107	.4417	.5493	.6173	9416	.9330	.9191	. 3987	671	4240	5447	.7183	9234	.9129	.8867			1.60000		0000	1.00cuu .62cu	900000-	
• 9656	基位日本。	•5136	2674	. 9762	. 9669	3656*	0076*		.4116	. 522E	6453	.9618	. 9483	.93/6	•4215	.5:30	.6105	36.36	9369	.9203	.9014	. 100	0000	94000	.7107	.9251	.9136	.8584		•	1.20060		- 1	1.226 .5660	-0-30069	9000.
.9680	.3912	.5129	57/38	9776	.9677	9 626	.9428		.3925	.5156 5775	6392	.9538	.9493	.9388	.4312	.5363	.6033	.6713	.9318	.9216	.9339		4100	,326¢	.7333	.9267	54163	6965			00000			53500	.00000	
.9703	.3730	• 5068	.5677	3796	. 9585	. 96 36	9576*	-	. 3740	7803°	6333	6596	• 350¢	. 9399 . 9268	.3816	. 5295	0265	. 6643	9327	. 9228	. 9063	9	. 3550	. 5495	. 6963	. 9264	.9151	3918	999• SI		00	ם ח		3600	2 0000	99
.9722	.3547	8305*	.5616	9000	9695	.9614	.9481		: 3555	5033	6268	.9679	.9514	. 92439 . 9243	.3637	.5228	.5903	6578	9336	9240	• 9086	,	. 3550	. 5420	.6837	. 9333	.9153	. 8932	CALCULATIONS		.60000	106.		986.	40.4	
.9742	.3365	1464.	. 5555	2317	3699	.9621	4056		. 3373	£7973	26.52	6696	. 9523	.9420	. 34.05	10	S	. 655 100 100 100 100 100 100 100 100 100 1	יטוי	. 9252	ויט	,	. 3440	5347	.5313	.9317	.9165	3946		<i>.</i>	00004.	0076	ľ	. 54500 . 54500	1.60000	00004
.9761	. 3132	n	46494	7 7 7 7 7 7 7 7 7 7 7 7	, (962	952		.3145	491	7 7 7	.3720	953	.9232				.6443					!		_	. 120	. 9173	4959	FOR INL		20035	י בי		. 70 000 . 57 59 0	1.56993	200
	1.40	s vei dlimb inders, dalabellings de saving de savings de savings des savings des savings de savings de savings de		3780	6			99 10 10	33.00			. 9740			1.50			u au	GACK .			2.00	. 39 50			. 9350			HINIMUM MASH NUMBER	FABLE NUMBER 23	~-1		-21	0 0 0 0 0 0 0 0	TABLE MUMPER 27	

TAPLE NUMB-P 25

-0.0000-01AB	•65553 2-00000 -c.00000 -0.00000 -0.000000 -0.00000-0	. 0.000.0	0.00600 0.00000 -0.00000 -0.00000 -0.00000 -0.00000-01.2 0.00600 0.00000 -0.00000 -0.00000 -0.00000-01.2 0.00000 0.00000 -0.00000 -0.00000 -0.00000-01.6	- 0.0000 - 0.0000 - 0.000000 - 0.000	-0.00000 -0.00000 -0.00000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000	-0.00050 -0.0000-01AB -0.00050 -0.00000-0 -0.0000 -0.00000-0	-0.60000 -0.50000 -0.00000 -0.00000 -0.000000 -0.00000-07AB 6A -0.50000 -0.00000 -0.00000 -0.00000 -0.000000 -0.000000-0 -0.50000 -0.50000 -0.60000 -0.00000 -0.000000-0 -0.50000 -0.50000 -0.50000 -0.00000 -0.00000-0	-0.30503 -0.30508 -0.0050 -0.0050 -0.00009 -0.00000-0 TAB 68 -0.005003 -0.00000-0	-0.56060 -0.50500 -0.60500 -0.00500 -0.00500-57AB 7 -2.0550 -5.0556 -0.50500 -0.50500 -0.50500-0 -3.05561 -5.85670 -0.05500 -0.05500-0
1.40000	1.20000	30.00	0.0000 0.0000 0.0000 0.0000		5000 5000 5000	0.00000-0- 0.00000-0- 0.00000-0-	-0.00000 0.00000 0.00000 0.00000	-0,30303	-0, 00360 -0, 00363 -0, 00580
1,00000	.93003	0.0000000000000000000000000000000000000	. 04200 . 04200 . 05000	2.00000 .36030 .12030	513	0.00.00.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	2,05000 2,77500 0,00000 0,00000 0,00000	-6,39663	-6.056c0 -c.06c0 -c.06c0
. 65000 . 65000	. 80000	01100	. 052233 . 052233 . 14088	1.50000 0.04000 0.040000	60	000000000000000000000000000000000000000	1.50005 7.0000 0.00000 0.00000 0.00700	-3,43090	-9.30600 -3.90006 -3.90006
. 79630	25	ילהי	. 14430 . 32636	06062°E	32	-2-00000 -2-00000 -2-00000	1.25099 .46500 .00200 .21000	11	- 0 • C0 0 0 0 0 - 0 • C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.00000	1ABLE NUMPER 3	119800	11-02-0 - 02-03-0 - 03-03-0 - 03-0 - 0	TABLE NUTRETP 4. 1.03000 0.070000 0.070000	0000000	TABLE NUMBER 5 0.03000 0.53666 0.53666	1481 E NINGTR 6A 1 021230 4 2030 11866 12866 13866	48. 19.00 19.00	TARLE RUMAFR 7 C. 53236 0.04634 C.63331

٤.

1

Ç,

E

67

						-0.0000-0-	0-00000-0-		2.40000-01ARLE 5	-0.00000-0	-0-00000-0-	0-00000-0-	-0.0000-0-	-0.03035-0	-0-00000-0-	-0.0000-0-	-0.00000-0	-3-00000-0-	0-00000-0-	-9.00000-6	
						2.00000	03069.	•	1.30000	3.20000	0.00000	.00250	. 00500.	. 03860	. 02550	. 02900	.01930	.00753	.03503	.00500	
	1.0 0.0	, 23.4	9.0	- DEG 10.00	02 * 0-	1.60000	. 24000		1.50009	2.70000	00000-0	• 00250	• ១០১០១	.00800	.62563	. 33360	.01900	.02750	.00500	• 56500	2.0
	DESIGNATION OUTER DIAM - IN	LENGTH - IN	NI DS	EDGE ANGLE		1.20000	.79060		1.20000	2.40060	0.0000.	.00256	• 35500	00800* .	• 13000	• 05200	.01900	.06750	.03500	•03200	
	TYPE	BOATTAIL L	OH AREA -	BOATTAIL TRAILING EDGE	sa FT	1.10000	. 90069		1.00000	2.34663	0.0000.0	. 38253	. 02553	• 00800	. 33200	.06253	.01900	. 55750	• 36263	. 90563	2 • 0
	ENGINE	NOZZLE	BASF	BOATTA	A10 -	1.00003	.86500		.95,060		. 00000	. 30250	.03500	. 30300	.03965	.05960	.01933	.32750	• 10503	.09503	INI
			*				.91000		.85003	1.68003	C•00C0•0	00400	.00800	.01866	.52456	.03660	.01930	.09758	• 36500	.00500	INPUT/PO
	0 °0 %	0 0	53.8		1.30	. 33000	. 93400		.75000	1.53060		. 00900	. 61450	.31598	. 32535	. 12961	.01939	• 00756	. 33583	• 35500	ONE CARD
Y	SNATION - IN	STH - 12	NH	Chag Tagle Flag	SPFOIFIC HEAT RATIO	. 6039	.97230	G TABLE	• 55 330	1.42000 1		. 51233	. 01306	.61496	.61890	.02693	.01930	. 03759	. 55552	.03633	• ENGINES 2.0
NOZZLE INPUT DECK	NOZZLE TYPE DESIGNATION MAXIHUM DIAMFTER - IN	VERALL PLUG LENGTH	NOZZLF SPACING - IN	SOATTAIL CPAG TAN	PRIMARY SPFJIFJ(BASE DRAG TABLE	1.03006	INTERFERENCE DAG	0.0000	1.09630	0 - 00 C - C	195ce •	002500	30360.	03500•		.01930	.00750	• 03500	33530*	PCNDE 0.0 NO.
ž	žż	0	ž	ŕ	۵	\$		H		Acres on			استدنس	olone, r.				68	3		a

)

;

CASE	1.000	CASE ALT	
Sa	1.000	FS	
HFT RF	29234,486	HET RE	
SFCA	2.121	SFCA	
FNRF	13782.990	FPRF	
rkan Re	27 EX	האל	
HILRE	300 -1	MILRF	
DINLET	0.000	DINLET	
COSPL	6.326	COSPL	
COULD	7. 070 9. 6	07600	*
COINE	0.00°C	CLIMI	
DNOZ	0 0 0 0	ZONO	
COST	0.000	CDAT	
COBASE	000°0	ChitASE	,
COINT ONOT PEF	3 C	CELTAI CANO. REF	
04/84	2.195 651.529		
A.8	650.252	AE	
CFG	1.000		
RETA	3.760	9514	
FN INPUT	17030.600	FU INPUT	
CEC TABLET	10000	T 110111	
H INPUT	132.52C	INDER IN	
W ABS	132,526	See H	
FN/DELTA	13732.996	FN/DELTA HF COR	
SFC COR	2.121	SFC COR	
TAMS	513.690	TAH3	
РАНВ	2115, 226	РАНЗ	
110	513.690	III	
74/074	13.1 0.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
ADI/AC	9 (3 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5	ALETAC ACIAC ACIAC	
STATUS	ចិត្តទិ	STATUS	,

,)

				•																						
				•	·						,															
									•			*							,		والمراجعة					
CASE ALT	PS FINA FINA	SFCA	FNKF	FRAM	KF HJLRF	DINLET	Coero	CDSYP COINL	2040	CUBI	SOINT	aroz REF	Pe./Pu	01		BETA	Se INPUT	10	H INPUT H ABS	FNZDELTA	AF COR	74.13	811	Û	AGE/AC ACI/AC	AE/AC
8.000 15090-000	1,630	21 545, 563	9729,939	1551,468	1,000.	ນ ຕ • ເ	0.000	ຕວນ ອີ້ ອີ້ ອີ້	66.031	0.000	3 # 1 3 # 1 5 # 1	47.773	2.414	719.614	543•120 1•636	15.084	1513C.665 21899.685	2.168	131.592 118.800	17228.591	43578.322	465.197	100000000000000000000000000000000000000	133,605	ວດຣ•ຍ ວອດ•ຍ	2.00
CASF	PS Fi.	•	FNRF	FRAM	MILRE	DINLET	COBLD	CDBYP	ZONO	CORT	COINT	DNOZ REF	P8/P0	49	76 CFG	BETA	FN INPUT	SFC INPUT	W INPUT W ABS	FNZDELTA	WF COR	TAMB	140	2	ACE/AC ADI/AC	A C/AC

MACH NUMBER	. 6030	J79-8 Ft CONFIGURATION KS/M8=.08
CASE	14.060	CASE ALT
PS	1.000	
FNA HFT RF	16533.200	FT RF
SFCA	2.231	SFCA
FNRF	7411.908	FNRF
FRAM	1719,667	- Jan
Kr MILRF	1.000	ir HILRF
OTNI ET	036.45	
COSPL		TASOO
COSCO	000 0	0.1800
COUNT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COBINE
2000	42,943	20140
COBT	926	1800
CORASE	0000	COBASE
COINT	. 326	
DNOZ REF	67.970	ONOZ REF
P8/P0	2.677	
49	177.797	Aç
48	727-199	
GF1: BETA	1+ 0 0 0 8 + 6 54	
FN INPUT	7	TOCK AND THE STATE OF THE STATE
SFC INPUT		SFC TWPUT
H INPUT	130.944	N INPUT N A3S
FN/DEL TA	19972-287	FP/OELTA
WF COR	48966.910	MF COR
SFC COR	2:4:5	SFC COR
TEMB PAMB	429.535 733.756	TFH3 PFN3
- o	197.506	
A DE / AC	230 °C	ACE/AC
ACTAC	ນ ຄ ຄ ຄ ຄ ຄ ຄ	
AUVAC	3.000	3L/4c
STATUS	036 *0	STATUS

3

	,					•								,			7			•		,					,			
							•	-	9 -			· -	•	•												-				
			• .																•						,					
1	4						,		,					,		, u						,				•				
	•							-						u.	REF				X V	TUPUI	Tugal	בּב	LTA	œ	90°	•		ည	ن د	
	CASE	Sd	FNA WFT RF	SFCA	FNRF	FPAH	RF HILRF	0 14 TC	Cra		COLNE	DNOZ	CDST	COBASE	20HO	P8/P5	Y 0	AR	8r.T2			H INPUT	FN/0E	WF CO	SFC C	PANS	17.6	ACE/A	AC I / AC	STATE
	35600•366	1.000	5673,291	2.275	5737.524	1671.990	. 1.05C	47.650	440.	.013	22.0 25.0 25.0	151,801	.013	300.0	75.018	3.057	865.624	77 1.312	1.000	5930.000	20211	178.865	24189.239	63117.599	2.510	496.518	444.290	245	• • • • • • • • • • • • • • • • • • •	0
	CASE		FWA NFT RF	SFCA	FNRF	FRAH	RF MILRF	Z u	SPL	20	COIN	ZONÔ	BT	COBASE	DNOZ REF	P.8/P.0	49	į	SETA.	FN TNPUT	SEC TAPUT	M INPUT	FNZOELTA	COR	C COR	PAMB	110	A DE / AC	ADI/AC AG/AC	CTATUS

Ł

ŗ

ď.

CASE	36.000	CAN
PS	1.000	ps
FNA HFT RF	5279.403	FINE AFTER
V J J J	2 7 24	▼ 3.3.3
T N. T.	5517,351	TANT TANT
FRAH	2330.438	
RF HILRF	. 934 . 991	RF MILRF
DINLET	246,559	DINLET
COSPL	969.	CDSPL
COSTO	.313	GTEGO
COUNT	5. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	COINT
7080	2000 ° 000	ZONG
CURI	100.	1500
CORASE	3 to 0	
CUINI DNOZ REF	88,620	DNO2 REF
5 A A G	は、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本の	
AA	867.924	
SFG	1.066	056
WETA	1.230	BFTA
FN INPUT	5546.000	FINDUT
HF INPUT	12463.600	WF INPUT
SFC INPUT	2,223	SFC INPUT
M INPUT	1/3.556	· · · · · · · · · · · · · · · · · · ·
# F 0.5	02.00	T 405
FN/BFLTA	36144.775	FN/DELTA
HF COR	97152.437	WF COR
SFC COR	24686	SFC COR
TANG	339.970	TAMB
PAMB	339, 102	PENG
TTO	502,281	143
ď	311,574	O
ADEZAC	.537	ACE/AC
A 81/AC	2/101	
AUVAC	1560	21/40
STATIIS	000 40	

... i

A PACH COURSE	05K 1.000	J79-8 F4 CONFIGURATION MS/WE=.06
CASE	46.000	C/ SE
ACT	3F630.00C	A! T
		Sd
WFT RF	12317.271 27655.274	THE LET
9 7 3 7	*07 6	
1 L	13644,352	. H3X4
FRAM	7471.331	FRAT
RF HILRF	. 935	R.F.
DINLEY	785.332	
COSPL	. 107	CDSPL
07800	. 623	0 Te30
COINL	355 co	Trings COIst
2086	500 C	2040
Contract	770 •	CONT
COINT	3 (d) 3 (d) 4 (d) 5 (d)	CARRACE
DNOZ REF	93.783	DF-22 REF
P8/F0	6.466	20/30
49	1176.214	
46	812.564	AE
CFG BETA	. 6000.	CFC
TURNI NA	13635,000	FF Inbut
	27072	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
K INPUT	172.430	DLAT OF TO
W ASS	152.448	SPV H
FNZDELTA	52497.568	FN/05LTA
MF COR	132322,357	MF COR
SFC CON	2.521	SFC COR
PAMB	476.518	PAH3
TTO	535, 537	
0	339.761	C.
ADEZAC	865.	ACE/46
AO AC	.598	ALIVAC ACAS
STATUS	398 6	CLATIS

L

į.

を

HACH NUMMER	e 2.5000	J79-8 F4 CONFIGURATION MS/We=.08	OEC
CASE	55.000 35020.000	CASE ALT	
4	16900	9.0 4.5.0	
HFT RF	34196,936	HFT RF	
CA	2.234	SFCA	
FNPF	15849.340	FNRF	
7 7 2 2 U	456.	Z 12 22 22 22 22 22 22 22 22 22 22 22 22	
HILRF	. 925	MILRE	
NLET	947.109	DINLET	
SPL	, 673	Jesus	
COBLO	920°	COSLO	
COTNL	. 100	THIO2	-
70	24.245		
181	090 •	1600	,
BASE	900.0	CP34SE	
CDINT	€000°	COINT ONO DEE	
120	7:0477		
P8/P5	8.241	pd/sd	
49	117.6.214	, , , , , , , , , , , , , , , , , , ,	
a e CFG	937 • 468 • 968	ري ريان	
BETA	612	BITA	}
FN INPUT	16730-000 34998-000	FR INPUT	
SFC INPUT	2.096	5	
INPUT ABS	139-789	M INPUT	j
FN/DELTA	63815.156	FMJELTA	
WF COR	167258.493	WF COR	
SFC COR	202 021	SFC COR	
PAME	532.014 436.518	lans PAN3	
110	728.973	:	
	1323.251		
AGE/AC Ant/Ac	633	カレデノカのようによって	
A D / A C	• 632	ACARC	1
STATUS	3 • 603	STATUS	
			1

ز

•

3

REFERENCES

- Petersen, M. W., and Tamplin, G. C., Experimental Review of Transonic Spillage Drag of Rectangular Inlets, AFAPL-TR-66-30, May 1966.
- 2. Kirkbride, E. B., Wind Tunnel Test on the 5 Percent Scale F-4J Pressure Model in the McDonnell Polysonic Wind Tunnel, MDC Al045, Volume 1, 17 June 1971.
- McVey, F. D., Rejeske, J. V., and Phillips E. J., Experimental Evaluation of Inlet Drag Characteristics in the Transonic Mach Number Regime, AFAPL-TR-68-119, November 1968.
- Anderson, R. D., Keller, K. J., and Nieser, D. E., Exhaust System Interaction Program: Analysis of Wind Tunnel Data on a 5 Percent Scale F-4 Jet Effects Model in the McDonnell Polysonic Wind Tunnel, PSWT Test 295, MDC Al333, Volume I, January 1972.
- Gould, D. K., and Eastman, D. W., Methods Used to
 Determine Aerodynamic Drag and Installed Propulsion
 Thrust for the Boeing Lightweight Fighter, D199-10003-1,
 The Boeing Company, November 1972.
- Ross, P. A., Lightweight Fighter Propulsion System Development, D180-14475-1 TN, The Boeing Company, January 1973.

14.1

3

Ł

ſ

C

1

Security Classification

OCCUMENT CONTROL DATA - R & D (Security classification of title, body of ab tract and indexing analysis in must be entered when the overall report to classified 1 ORIGINATING ACTIVITY (Corporate author) The Boeing Company P. O. Box 3999 Seattle, WA 98124 3. REPORT TITLE Propulsion System Installation Corrections Volume III: Sample Cases 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 31 December 1971 to 31 December 1972 3. AUTHORIS) (First name, middle initial, last name) William H. Ball
The Boeing Company P. O. Box 3999 Seattle, WA 98124 1. HEPORITITIE Propulsion System Installation Corrections Volume III: Sample Cases 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 31 December 1971 to 31 December 1972 5. AUTHORIS; (First name, middle initial, last name)
P. O. Box 3999 Seattle, WA 98124 Propulsion System Installation Corrections Volume III: Sample Cases Descriptive Notes (Type of report and inclusive dates) Final Report 31 December 1971 to 31 December 1972 S. Authorits (First name, middle initial, last name)
Seattle, WA 98124 1. REPORT TITLE Propulsion System Installation Corrections Volume III: Sample Cases 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 31 December 1971 to 31 December 1972 5. AUTHORIS) (First name, middle initial, last name)
Propulsion System Installation Corrections Volume III: Sample Cases DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 31 December 1971 to 31 December 1972 S. AUTHORIS; (First name, middle initial, last name)
Propulsion System Installation Corrections Volume III: Sample Cases DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 31 December 1971 to 31 December 1972 S. AUTHORIS) (First name, middle initial, last name)
Volume III: Sample Cases * DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 31 December 1971 to 31 December 1972 5. AUTHORIS) (First name, middle initial, last name)
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 31 December 1971 to 31 December 1972 5. AUTHORIS) (First name, middle initial, last name)
Final Report 31 December 1971 to 31 December 1972 5. AUTHORIS) (First name, middle initial, last name)
5. AU THORIS! (First nume, middle initial, last nume)
5. AU THORIS! (First nume, middle initial, last nume)
William H. Ball
6. REPORT DATE TAL NO. OF PAGES TO NO. OF REFS
December 1972 xii + 80 = 92 6
F33615-72-C-1580 AFFDL-TR-72-147
OL PROJECT NO.
1366
9h, OTHER REPORT HO(\$) (Any other numbers that may be assigned this report)
d.
10. CISTRIBUTION STATEMENT
Distribution limited to U.S. Government agencies only; test and evaluation; statement applied 29 December 1972
evaluation; statement applied 29 December 1972. Other requests for this document must be referred to Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base, Objo 45/133
11. SUPPLEMENTARY NOTES PARTY NOTES PARTY ACTIVITY
Flight Dynamics Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base, O
13. ABSTRACT This report presents the results of a research program to develop a

This report presents the results of a research program to develop a procedure for use in calculating propulsion system installation losses. These losses include inlet and nozzle internal losses and external drag losses for a wide variety of subsonic and supersonic aircraft configurations up to Mach 4.5. The calculation procedure, which was largely developed from existing engineering procedures and experimental data, is suitable for preliminary studies of advanced aircraft configurations. Engineering descriptions, equations, and flow charts are provided to help in adapting the calculation procedures to digital computer routines Many of the calculation procedures have already been programmed on the CDC 6600 computer. Program listings and flow charts are provided for the calculation procedures that have been programmed. The work accomplished during the program is contained in four separate volumes. Volume I contains an engineering description of the calculation procedures. Volume II is a programmers manual containing flow charts, listings, and subroutine descriptions. Volume III contains sample calculations and sample input data. Volume IV contains bookkeeping definitions and data correlations.

DD . 107 . 1473

n all = 554-64-04-

KEY WÒRUŚ	LIN	r A	10	r B	LIN	кс
ner nonos	ROLE	w:	ROLL	w:	FOLU	<u> </u>
Afterbody Drag						
Boattail Drag	1	ŀ				į
Bookkeeping Aero-Propulsion Forces						
Boundary Layer Bleed Drag					,	
Bypass Drag					ľ	
Inlet Performance						
Inlet Shock Losses						
Nozzle/Afterbody Installation Losses						
Nozzle Interference Drag						
Nozzle Thrust Coefficient						
Propulsion Installation Losses						
Spillage Drag]	
Subsonic Diffuser Losses	,					
Supersonic Inlets				<u> </u>		
Total Pressure Recovery						
•						
			•			
	}		,			•
•				-		
•	*					
					}	
·						
	,					
			,			
		1				
		1			1	
tion and the state of the state						

Unclassified Security Classificat, a)

)

•

,

•